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ABSTRACT

Multimodal Learning Analytics is a field that studies how
to process learning data from dissimilar sources in order to
automatically find useful information to give feedback to
the learning process. This work processes video, audio and
pen strokes information included in the Math Data Cor-
pus, a set of multimodal resources provided to the partici-
pants of the Second International Workshop on Multimodal
Learning Analytics. The result of this processing is a set
of simple features that could discriminate between experts
and non-experts in groups of students solving mathematical
problems. The main finding is that several of those simple
features, namely the percentage of time that the students
use the calculator, the speed at which the student writes or
draws and the percentage of time that the student mentions
numbers or mathematical terms, are good discriminators be-
tween experts and non-experts students. Precision levels of
63% are obtained for individual problems and up to 80%
when full sessions (aggregation of 16 problems) are analyzed.
While the results are specific for the recorded settings, the
methodology used to obtain and analyze the features could
be used to create discriminations models for other contexts.

Categories and Subject Descriptors

K.3.1 [Computing Milieux]: Computers and Education-
Computer Uses in Education

Keywords

Multimodal Learning Analytics, Math Data Corpus

1. INTRODUCTION
Learning Analytics is a new field that attempts to improve

the learning process through the automatic measurement of
the activities of participants in such process. In that respect
is not different from the field of Business Analytics, with
maximization of learning efficiency instead of maximization
of profit at its goal. However, while in business the vast
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majority of relevant actions are by necessity kept on record,
in learning, much of what happens during the process is not
recorded and cannot be used to evaluate it.

The most readily available sources of learning data are
the interactions of students and instructors in e-learning
platforms. As most of these tools keep detailed logs of ac-
cess and content consumption and production, it helps re-
searchers to collect and process large amount of data that
could provide insight in the usage and interactions within
these tools. Yet, most of the traditional learning processes
occurs in face-to-face settings with very little record keeping,
apart from the memory of the participants and short and un-
structured notes made by the instructors and students. To
avoid the proverbial mistake of only searching where it is
easy to search, new sources of data about the learning pro-
cess should be recorded and analyzed. These sources are
bound to be of varied nature: video and audio recordings,
eye tracking information, biometric measurements, digital
tools usage, among others. The capture and combined anal-
ysis of these diverse data is the focus of the sub-field of Mul-
timodal Learning Analytics [1]. However, due to its novelty
and perceived complexity, not much research is done in this
sub-field. Apart from seminal works made by Blickstein [1],
Worsley [2] and Scherer et al. [3], it is an unexplored field
with great potential for discoveries.

The possibilities of Multimodal Learning Analytics are
supported by the great advance in multimedia processing
technology in recent years. The developed technologies and
algorithms provide ways to tracks objects [4] and people[5]
in videos , to produce good quality transcripts of audio or
to identify letters and figures in sketches [6]. All these tech-
niques can be used to obtain useful features from multimodal
recordings of student activities in the real world.

This work used existing multimedia processing technolo-
gies to produce a set of simple features from a multimodal
dataset of recordings of groups of students solving math-
ematical problems. These features were used to answer
the following question: which factors of students’ behavior,
while solving a problem, are good predictors of an expert in
a given group? The answer to this question provides ways
to automatically identify the experts in groups and even
provides feedback to instructors about the students’ capa-
bilities, one of the main purposes of Learning Analytics.

The structure of the paper is as follows: Section 2 presents
a brief description of the multimodal dataset used. Section 3
presents the extracted features, with details of the rationale,
algorithms and software used to obtain them. Section 4 de-
scribes statistical and classification approaches followed to
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determine the discrimination power of these features to pre-
dict the expert in a group. Section 5 discusses the findings
of the previous section and provides light on their useful-
ness. Section 6 mentions related work, and finally Section
7 presents the conclusions of the work and ideas for further
research.

2. DATASET
The data analyzed in this paper corresponds to the video,

audio and digital pen information included in the Math Data
Corpus (MDC) [7], a set of resources publicly available to
the participants of the Second International Workshop on
Multimodal Learning Analytics.

The MDC was composed by twelve high-fidelity time-
synchronized multimodal recordings on collaborating groups
of teenage students trying to solve several geometry and
algebra problems. It also included several human-coded
resources about: a) whether the problems were correctly
solved by the participant students, b) temporal information
associated to each problem, c) representational codification
of the students’ writing (not available for the complete set of
problem solving sessions), and d) temporal offsets between
the pen strokes and the media files of the recorded sessions
(only available for six of the twelve sessions).

In total, the dataset contained multimodal information of
18 different students participating in 12 problem solving ses-
sions. In each session, a group of 3 students worked together
to solve a set of mathematics problems, each of which be-
longed to a different difficulty level: easy, moderate, hard
and very hard. The students of each group met and worked
twice, in two separate sessions, to solve two distinct sets of
problems. In each of these sessions, one of the students was
assigned as the leader of the group in order to interact, on
behalf of the other members, with a computer system that
displayed the students the problems to solve and received
the answers submitted. The resources of the MDC also in-
cluded details on the designated leader of each session and
the system used to uniquely identify the students.

In a previous study described in [7], the problem solving
sessions included in the MDC were manually assessed by
several human evaluators to determine the expert student
of each recorded session. To this end, a grading scale was
established: a student received a positive or negative score
according to whether he or she correctly answered a given
problem or not. The assigned score depended on the diffi-
culty level of the corresponding problem. For each session,
the student’s individual scores were summed up into an ex-
pertise score.

For a full description and additional details on the Math
Data Corpus, the reader is referred to the work of Oviatt et
al. [7].

3. FEATURE EXTRACTION
For each session recording, the audio, video and strokes

files of each student were split into small pieces correspond-
ing to the individual problems solved by each group. This
segmentation was based on the time boundaries information
detailed in the coding data related to the Math Data Cor-
pus.This section describes the processing stages applied to
each type of input data from the MDC along with the pro-
cedure used to extract the different features that were used

for the expertise estimation. Due to the multimodal nature
of the data, this section is divided by type of media.

All the software used for the feature extraction and its
posterior analysis is freely available online 1 in order to pro-
vide means of verification and repeatability.

3.1 Video

3.1.1 Calculator Use

One of the hypothesis that lead our analysis was that the
number of times a student uses the calculator (NTUC) while
trying to solve a math problem should be a good indicator
of whether he or she actually knows what inputs should be
provided to the calculator in order to solve the given prob-
lem.

The first step to calculate this feature was to determine
the position of the calculator and the direction in which it
was pointing at. The top-down view video, that contains
a close-up of the table where the students are working was
used because it best captured the details of the calculator.
An image of the calculator was captured manually from this
video. An implementation of the Speeded Up Robust Fea-
tures (SURF) technique [8] provided in the OpenCV library
[9] was used to extract the feature points of the calcula-
tor images. The SURF algorithm was then applied to each
frame of the video to obtain the feature points. The Fast
Approximate Nearest Neighbor Search (FLANN) [10] library
was used to match the feature points of the captured image
of the calculator with the feature points of each frame. The
best matched points were used to calculate the position of
the calculator averaging their x and y coordinates and the
direction in which it was pointing at using the rigid trans-
formations capabilities provided by OpenCV. While there
were some frames in which this matching was not possible
due to object occlusions or changes in the illumination of
the calculator, in general the described detection technique
was robust and provided useful position and direction data.

Figure 1: Determination of which student is using
the calculator in the given frame. Colored edges
indicate the working area of each student.

Using the calculator center point and the direction to
which it was pointing at, a set of other points lying on the
same 2D line were obtained. In MATLAB, these points were
generated over a segment of the calculator direction line that

1http://ariadne.cti.espol.edu.ec/xavier/mla13
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was traced up to touch either the left, top or right border
of the frame. Specific intervals of these edges were used to
define which parts of the video frame exclusively belonged to
the working area of each student during the problem solv-
ing session. Figure 1 depicts the edge points that define
the students’ working areas. It also shows the results of
our algorithm indicating that, in the shown scene, the cal-
culator is being used by the student located at the right
side of this view. This result is indicated by the intersec-
tion point of the calculator direction line with the part of
the frame border corresponding to the right student. Since
during each session the students changed their positions, a
further student-position matching was needed to establish
which student was located at the left, center and right ar-
eas of each frame. This mapping process was performed
considering the time boundary information of each problem
provided in the coding resources of the MDC. Finally, once
the total number of times in which the calculator was used
by each student was found, a proportion of its usage was
computed in relation with the total number of frames where
the tracking algorithm was able to successfully find the cal-
culator. This feature is referred as Proportion of Calculator
Usage (PCU).

3.1.2 Total movement

The total movement (TM) of a student represents the de-
gree to which he or she moved during the solving problem
session. It is hypothesized that the movement is related to
the leadership and expertise. This measurement was calcu-
lated by processing the frontal videos of each student par-
ticipating in a group contained in the MDC.

To determine the total movement of each student at a spe-
cific video frame, a movement model image was obtained as
a result of the subtraction of the current frame and the pre-
vious one. This model was obtained by applying the Code-
Book algorithm [11, 12], which determines all the significant
changes between two consecutive frames and discard small
variations caused by noise or changes in the lighting condi-
tions. As a result of this algorithm, a binary image, where
moving areas are represented by white regions, is obtained
(see Figure 2).

The total movement of a student in a given frame is de-
fined as the number of white pixels contained in the binary
image output by the Codebook algorithm. This magnitude,
when computed for the entire problem solving session, re-
sults from summing up its individual values obtained from
each frame that compose a problem recording.

(a) Original frame (b) Difference frame

Figure 2: Results of the Codebook algorithm.

3.1.3 Distance from the center of the table

The distance of each participant to the center of the table
(DHT ) could be a measure of how concentrated the student
is over the solution of the problem. It was calculated by
first finding their position in the video and then calculating
their distance to the center of the table at each frame. At
the end, the averages of these distances were calculated for
every problem resolution.

A head detection and tracking algorithm was used instead
of following the whole body, because this part of the body
was clearly visible in the videos. Participants moved con-
siderably during each session and so a robust algorithm was
needed not just for tracking their heads on a wide-angle top
video, but also learning as their appearance changes. For
this task, the Tracking-Learning-Detection (TLD) [13] algo-
rithm was used.

OpenTld [13, 14], a C++ implementation of TLD, was
used for tracking each participant’s head. Three instances
of Opentld were created, one for each student. First, the
head of each participant is encircled in a bounding box at
the first frame of the video. Then, at each subsequent frame,
the algorithm tracks the head and learns any change on its
appearance despite how much it moves. When detected, the
object is bounded in a box and its centroid coordinates are
saved for further processing. The Euclidean distance from
each head centroid to the center of the table is calculated
and then, the average of these distances is obtained by prob-
lem (see Figure 3). Additionally, the variance of the average
distance head to table (SD-DHT), was calculated to deter-
mine if a participant remains mostly static or varies his or
her distance to the table.

Figure 3: Calculation of the distance of the student’s
head to the center of the table.

3.2 Audio
An automatic transcription module generated the text

representation of the words spoken by each student during
each solving problem session. The Microsoft Speech Plat-
form 2, the FFmpeg libraries 3, and the Google Speech to
Text API 4 were used to this end.

After the problem-based segmentation stage, each prob-
lem was further segmented into several smaller recognizable

2microsoft.com/en-us/download/details.aspx?id=10121
3www.ffmpeg.org
4gist.github.com/alotaiba/1730160
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audio units. The starting and ending timestamps of any au-
dio portion that purely contained noise or non-recognizable
speech fragments (i.e. loud breathing, excessive blow, and
puffs) were automatically identified to rule the correspond-
ing segments out of the subsequent speech recognition phase.

Two different recognition engines were individually ap-
plied to the recognizable units resulting from the previous
segmentation: a) A Microsoft speech recognizer with a gen-
eral, context free, dictation grammar, and b) a web-based
recognizer that used the Google Speech Recognition online
service. Both speech-to-text engines allowed us to recog-
nize the audio pieces as free dictated text, without requir-
ing any assumptions about specific contexts or word order
to successfully identify and interpret the audio input. The
results of the Google recognizer, whose accuracy has been
reported between 17 and 20 percent for the Word Error Rate
(WER) [15] and about 75% for the sentence-level semantic
[16], were generally superior and more accurate than the
Microsoft technology.

Using the outputs of the Microsoft and Google recogniz-
ers, a unique, unified, transcription file was generated for
each problem solved by every student. The building process
of this unified transcription did not require any time-based
alignment since the input audio files processed by both rec-
ognizers resulted from the same segmentation process and,
thus, corresponded to the same time intervals.

The recording of all students’ voices was not considered
in the audio processing stage since the speech recognition
results of these files were too poor to be considered as sig-
nificant. They were mostly recognized as noise.

In order to cope with the inherent language variations (in-
flected words, conjugation tenses, plurals), when looking for
key words, the stats generator process included a stemming
component to reduce the transcripts and any searched term
to their written root form. The English stemmer used was
based on the Lovins algorithm proposed in [17].

The unified transcription file was processed by a stats gen-
erator algorithm that characterized each student’s behavior
from their speech signal as follows: Two elementary stats
were computed without considering the students’ speech
content and three others were based on the analysis of what
each student actually said during the problem solving ses-
sion. Following, a brief description of each of these features
is presented:

Number of interventions (NOI): Indicates how many
times a student took part or participated speaking while try-
ing to solve a problem. This measurement only considered
the recognizable audio pieces found.

Total speech duration (TSD): Resulted from sum-
ming up all the single time lengths (in seconds) of each stu-
dent’s intervention while solving a problem.

Times numbers were mentioned (TNM): Indicates
how many interventions, a given student mentioned num-
bers. The algorithm looked for numbers that were detected
by the speech recognizers either in its numeric representation
(e.g. 2, 100) or as text (e.g. two, one hundred). It also con-
sidered several formats, including decimals and fractional
numbers. The percentage of times when an intervention
mentions numbers (PNM) was also calculated.

Times mathematical terms were mentioned
(TMTM): Accounts for the number of interventions in
which a student refers to a math term. To decide whether
a given word can be considered as mathematical terminol-

ogy, the stats generator consulted a list of 1,352 math terms
obtained from the Mathwords 5 website. The percentage of
times when an intervention mentions mathematical terms
(PMTM) was also computed.

Times commands were pronounced (TCP ): Indi-
cates the number of times in which, within his/her interven-
tion, a student pronounces one of the predefined commands
that the computer assistant was able to understand (e.g.
“ready to work”).

3.3 Digital Pen
The information produced by the students’ digital pen

was processed using the stroke representations capabilities
of PaleoSketch [18], a low-level sketch recognition framework
promoted by the Sketch Recognition Lab of the Texas A
& M University. For the sketch recognition process, the
functionalities provided in the Strontium sketch recognition
library 6 were used.

The goal of the processing stage applied to this data
was detecting and recognizing all the significant geometrical
primitives drawn by the students while trying to solve the
problems. After the corresponding problem-based segmen-
tation, a temporal offset was applied to each set of strokes
in order to align them with the starting point of each exper-
iment recording. This time-based alignment was performed
using the information available in the linkage time files as-
sociated to six of the twelve experiments of the MDC. This
information was not available for all the other sessions, be-
cause of which we manually calculate it by closely analyzing
each recording against the digital pen data.

The used sketch recognition engine was able to identify
five different types of low-level geometrical primitives: lines,
rectangles, circles, ellipses and arrows. Unfortunately, it was
not able to recognize any higher-level shape composed by
other elementary sketches: It recognized complex structures
only when they were drawn in one single continuous trace
(a long stroke produced without lifting the pen).

Stroke path

Total displacement

Single point

t0

t1

1 1(x  , y )

0 0(x  , y )

dl

dlpath length = 

1 0(x - x ) 1 0(y - y )+displacement  = 
2 2

t0t1
time  = -

Figure 4: Scheme of magnitudes associated to a sin-
gle pen stroke.

Two categories of features were obtained from the digi-
tal pen data. First, the following basic measurements were
computed from the traces sets:

Total number of strokes (TNS): Indicates how many
continuous traces were done by a given student during the
problem solving session.

5www.mathwords.com
6github.com/eyce9000/strontium
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Table 1: Coefficients of the Logistic Model Predicting Odds for a Student Solving Correctly a Problem

Predictor Variable B Wald df p value exp(B)
Number of Interventions (NOI) 0.068 24.019 1 0.001 0.934
Times numbers were mentioned (TNM) 0.175 23.816 1 0.001 1.192
Times commands were pronounced (TCP ) 0.329 4.956 1 0.026 1.390
Proportion of Calculator Usage (PCU) 1.287 25.622 1 0.001 3.622
Fastest Student in the Group (FW ) 0.924 18.889 1 0.001 2.519
Constant 1.654 53.462 1 0.001 0.191

Average Number of Points (ANP ): Represents, in
average, the number of points that compose each stroke
drawn.

Average Stroke Time Length (ASTL): Accounts for
the number of milliseconds that the student needed, in av-
erage, to complete each stroke.

Average Stroke Path Length (ASPL): Represents
the average number of pixels that the trajectory of strokes
drawn had.

Average Stroke Displacement (ASD): Accounts for
the average displacement defined by the starting and ending
points of each stroke.

Average Stroke Pressure (ASP ): Represents the av-
erage pressure with which each stroke was drawn by the
student.

Figure 4 shows some of the features described above when
they are observed for one single stroke. The scheme il-
lustrates a stroke starting at point (x0, y0) and ending at
(x1, y1) that has been drawn between the millisecond t0 and
millisecond t1. This trace is composed by a sequence of in-
dividual points (as the one indicated with the green circle)
each of which has a timestamp associated. The correspond-
ing formulas for the path length, the displacement and the
time length are also shown.

Using the stroke classification features from the Stron-
tium library, the following features were computed for each
student problem solving session: number of lines sketched
(NOL), number of rectangles sketched (NOR), number of
circles sketched (NOC), number of ellipses sketched (NOE),
number of arrows sketched (NOA) and, finally, the addition
of all of the geometrical figures sketched (NOF ).

4. RESULTS
To answer the research question, two approaches have

been followed. First, most of the variables described in the
previous section were used to predict the odds and proba-
bility of a student solving correctly a problem. 567 units of
analysis were included in a logistic regression analysis that
used SPSS version 20 for Mac OS. Second, to predict who the
expert is in each group, the values of the different variables
were averaged by session and student. 36 different unit of
analysis were obtained for this second approach. Moreover,
Group 2 of the dataset has no defined Expert. All students
from this group were removed from the dataset, leaving only
30 valid cases. Due to this low number of cases, traditional
statistical methods, such as logistic regression, were not suf-
ficient to create a model to predict if a student is an expert in
the group. Instead, the technique of Classification Trees [19]
was used to identify which variables are able to discriminate
between Experts and Non-Experts. This technique creates
binary trees, determining which values of the variables cre-
ate the best partitioning in the dataset and its subsequent

sub-sets. Classification Trees, provided by rpart library [20]
in the R statistical software [21] for Mac, were used in this
second part of the analysis.

4.1 Odds of a student solving correctly a
problem

A Logistic regression was run with Student Solving Cor-
rectly a Problem (SSP ) as the dependent variable and
DHT , SD − DHT , TM , NOI , TSD, TNM , PNM ,
TMTM , PMTM , TCP , NTUC, PCU , TNS, NOL,
NOR, NOC, NOE, NOA, ASPL, ANP , ASD, ASTL and
ASP as predictor variables. Additionally a derived variable
to mark the fastest writing student FW was added to com-
pensate for the variability of the original variable ASTL.
The resulting model was significant reliable (χ2 = 100.67,
df = 24, p < 0.001).This model accounted for between
16.3% (Cox and Snell’s R-square) and 23.5% (Nagelkerke’s
R-square) of the variance in problem solved correctly status,
with 63.5% of the correctly solved problems successfully pre-
dicted. However, 72.7% of the incorrectly solved problems
were accurate. The overall accuracy of the model was 70.2%,
a cutoff value of 0.3 was used due to the fact that the dataset
included around 70% of incorrectly solved problems. In this
model, the following variables were significant predictors of
correctly solving a problem by a student: NOI (p = 0.039),
TNM (p = 0.013), TCP (p = 0.021), PCU (p < 0.001)
and FW (p < 0.001). Once these variables were identi-
fied, a second run for building a new model was performed;
however, in this run the predictor variables were only those
identified as significant predictors in the previous run. The
resulting model was significant reliable (χ2 = 88.35, df = 5,
p < 0.001) and accounted for between 14.4% and 20.9% of
the variance of problems solved correctly by a student. The
proportion of cases correctly predicted as solved were 60.9%
whereas 71.8% of the cases predicted as incorrectly solved
were accurate. The overall percentage of accuracy in the
model was 68.8% and the same previous cutoff value was
used. Table 1 presents the coefficients, Wald statistic, de-
grees of freedom and level of significance associated to each
predictor variable in this model. The values of the coeffi-
cients reveal that an increase of 1 intervention when solving
a problem is associated with a decrease in the odds of cor-
rectly solving a problem by a factor of 0.93, and that each
unit increase in: times numbers were mentioned, times com-
mands were pronounced, proportion of calculator usage and
the fastest student writing a stroke increases the odds of cor-
rectly solving a problem by a factor of 1.19,1.39, 3.62, 2.52,
respectively.
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Table 2: Classification tree splits with only non-
normalized features

Variable Value for Experts Discrimination Power
PCU > 0.41 4.44
PNM > 34.74 3.19
ASPL < 38.05 2.86
NOR < 0.13 2.86
TMTM > 6.25 2.65

To calculate the probability of correctly solving a problem
by a student (P ) the following formula should be used:

P =
e−11.7−0.1NOI+0.2TNM+0.3TCP+1.3PCU+0.9FW

1 + e−11.7−0.1NOI+0.2TNM+0.3TCP+1.3PCU+0.9FW

(1)

4.2 Expert prediction
All the features described in section four were input in the

Classification Tree algorithm. The results, shown in Table
2, suggest that PCU , PNM , ASPL, NOR and TMTM
have the higher discriminant values. Using the highest dis-
criminant (PCU), the produced tree classified correctly in
the dataset 80% of the time (8 out of 10) and identified
non-experts correctly also 80% of the time (16 out of 20).
Converting the model to words, it says that if a student uses
the calculator in the session more than 40% of time, he or
she is an expert. Selection by chance would be 33% for ex-
perts and 67% for non-experts. The classification tree fares
much better, especially identifying experts.

The precision of the classification could be improved if the
variables were normalized, that is, if they were comparable
among sessions. To normalize the features, they were con-
verted to a binary value in the form of: 1 if the students has
the highest or lowest value of that feature in the session, 0
if not. The selection of highest or lowest was determined by
the perceived belief of correlation between a given variable
and the expertise. For example, in the case of the Stroke
Time (ASTL), it is believed that a shortest time is indica-
tive of expertise, then the student with the lowest ASTL in
the group was assigned 1. On the other hand, the numbers of
times numbers are mentioned (TNM) correlates positively
with the expertise and as such, a 1 was assigned to the stu-
dent with the highest TNM . Table 3 shows the new calcu-
lated features. The resulting classification tree, mixing the
original variables with the binary variables provides a better
discrimination. Table 4 presents the new discriminant value
of the variables. The fastest writer (FW ) seems to dominate
the best discriminants for expertise, improving over PCU .
Using FW , the tree is able to identify correctly the experts
in 80% of the cases (8 out of 10) and the non-experts in 90%
of the cases (18 out of 20).

Even if the last classification tree is able to highly dis-
criminate experts and non-experts after the session is over,
it is interesting to explore how fast this conclusion could be
reached. For that, the last classification tree is applied to
the values of the first problem, then the average of the first
and the second, then to the average of the first, the second
and the third, and similarly until all the values for all the
problems are averaged. The results, presented in Figure 5,
suggest that as early as the 4th problem a high level of cor-
rect classification is reached. Also the percentage of correct

Table 3: Non-normalized features used in the tree
classification

Feature Normalized Method
PCU MC Highest value
DHT MMO/LMO Highest / Lowest value
SD −DHT LMV Lowest value
TM MM Highest value
NOI MI Highest value
TSD MSD Highest value
TNM MN Highest value
TMTM MM Highest value
TCP MCP Highest value
TNS MS Highest value
ASPL SS Lowest value
ANP LP Lowest value
ASD MD Highest value
ASTL FW Lowest value
ASP MP Highest value

Table 4: Classification tree splits with normalized
and non-normalized features

Variable Value for Experts Discrimination Power
FW > 0.5 6.53
LP > 34.74 6.53
PCU > 38.05 4.44
MN > 0.13 4.03
PNM > 6.25 3.19

classification is maintained and plateau at the final value
around the 12th problem.

5. DISCUSSION
Based upon the results previously presented, it is evident

that variables such as the fastest student in a group, the
percentage the calculator is used, and the times numbers
are mentioned while solving a problem, are key variables to
estimate whether a student is able to solve a problem or
not. These results might suggest that how fast the student
writes is maybe an indicator of how certain the student is
about how to solve a problem. Even though, this variable
was not initially used as part of the predictor variables, its
inclusion in the model made sense in the process. Another
critical variable predicting success in solving problems is the
percentage of using the calculator in a group. It is perhaps
natural, that a young student that knows how to solve a
problem, does not let others to use a tool that allows him or
her to succeed. The regression analysis also shed light as to
understand how interactions or interventions in a group are
related to the probability of solving a problem. On the con-
trary of what might be commonly thought, students with
few interventions, mentioning numbers are more likely to
correctly solve problems. Again, someone that knows the
solution to a math problem (an expert) probably does not
speak that much, but his or her intervention is used to in-
dicate a focused and precise affirmation about numbers and
the way to solve a given problem. The times a student men-
tioned commands when solving problems is a very specific
variable of the sessions recorded; it is definitely related to
the leader of the group interacting with the computer sys-
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(a) Evolution of Expert Classification
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(b) Evolution of Non-Expert Classification

Figure 5: Evolution of the classification results for expert and non-expert students using a variable number
of problems.

tem. However, an expert that solves problems could take
the role of leader when indicated the computer the solution
to a problem or prompted for a new one. Surprisingly, other
variables, such as the type of strokes a student draws, to-
tal movement when engaged in solving a problem, or the
proximity to the center of the table while collaborating in a
solution, were features that did not contribute in the iden-
tification of an expert or a successful problem solver. The
positive predictor variables were able to determine with a
63% probability when a student would solve the problem
correctly with only 30% of the non-correctly-solving cases,
incorrectly classified as positive. This is much higher than
selection by chance.

The analysis to determine if a student is or not an ex-
pert, predictably found similar factors that those for solving
a problem correctly, given that solving a problem correctly
is an indicator of expertise. However, when the individ-
ual problems are averaged and the variables are normalized
through a binarization, the noise in the data caused by spuri-
ous errors and distractions is reduced, increasing the level of
correct classification. The 80% of the experts are found with
just 10% of non-experts being incorrectly classified. Again,
these numbers are much higher than selection by chance.

The fact that the same variables are highly discriminant
at the problem and session level, made it possible to deter-
mine the expertise of the students, with a level of precision
above random choice, from the first approach. This is shown
in the Expertise Estimation analysis, where the correct clas-
sification level stabilized when enough problems (in this case
four) are averaged.

A positive aspect to underline is that the answering of the
research question took two methodological approaches that
resulted in a good confirmatory analysis.

It is important to note that the results obtained are diffi-
cult to generalize due to the low number of recordings avail-
able, especially those related to incorrectly solved problems
(more than 50% of the cases) and the ones used for Expert
Estimation (averaged by session). While it is improbable
that the results found are due to chance, this low number
of records, made impossible to assert that the levels of pre-
diction will stay the same if applied to a larger dataset.
Moreover, the use of very specific features, such as the use
of a calculator and times numbers and mathematical terms
were mentioned, impedes the findings to be applied to other
settings. However, the pen-based measurement of the speed

of writing, could be found also significant to determine ex-
pertise, or at least, confidence in other types of problems.

6. RELATED WORK
Several studies are closely related to leadership, domi-

nance or group collaboration (See [22]), but few are focused
on determining the level of expertise. The work of Scherer
et al. [3], similarly to the approach followed in the present
study, researched features more based on what a human
could superficially hear in audios and interpret from draw-
ings and found that the Peak Slope of the audio could dis-
criminate between Experts and Non-Experts. Some studies
suggest that it is possible to build models that can make pre-
dictions of the user’s level of knowledge or expertise, based
on real-time measurements of eye movement patterns during
a task session [23]. In this line, distinguishing levels of exper-
tise, based on features gathered from video while building so-
lutions based on physics knowledge, was studied by Worsley
and Blikstein [24]; their research concluded that two-handed
interaction is positively correlated to expertise. The inter-
action of both hands when solving problem is related to the
interaction of both hemispheres of the brain; thus an expert
is more likely to show this type of interaction when solv-
ing problems. Conversely, [25] states that expertise depends
heavily on implicit pattern recognition and selective extrac-
tion, which are skills acquired through perceptual learning.
Thus, experts might have absences of verbalization or no
interaction (no movement), when they used the “mind as
pattern recognizer”. As for the way experts and novices
represent solutions, the main difference is related to poorly
defined or qualitatively different representations on the side
of the novice. The experts quickly establish correspondence
between external events and internal models of these events,
which in turn correlates to the quick establishment/writing
of a solution [26]. Therefore, the fast representation of so-
lutions seems to be related to expertise level. The present
study also investigated the use of calculators while solving
problems and its relation to expertise. The use of tools in
learning environments was explored by [27], they studied the
variation in tool use and its relation to prior knowledge and
goal orientation and how this variation affects performance.
They found that there were no differences in performance
regardless the frequency of tools usage. Even more, prior
knowledge was not either related to tool use.
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7. CONCLUSIONS AND FUTURE WORK
The main conclusion of this work is that simple features,

derived from multimodal recordings of working sessions are
able to discriminate with a high degree of success experts
from non-experts in mathematics problem-solving sessions.
While a perfect classification currently requires semantic un-
derstanding of the recordings, good enough levels (80%) can
be obtained with features extracted with automatic algo-
rithms that barely touch the semantics of what is being
recorded. Also important to mention is that these algo-
rithms are widely available and are not specifically made or
tailored to the given problem.

The way in which the features were initially selected also
provides a conclusion that could be taken to other works
in the field. Some of what resulted relevant features were
selected based on common sense. For example, it was clear
to the authors that whoever uses the calculator is bound, in
more cases than not, to be the one solving the problem. The
same with the pronunciation of numbers and mathematical
terms. However, the most discriminant variable, the speed
of writing, was initially added only because the data was
readily available, but the authors did not considered it to
be suitable. After the results were obtained, it became clear
that the variable was measuring something relevant, the au-
thors hypothesize that it is the confidence of knowing how
to solve the problem. It is proposed that both techniques,
purposeful search or calculation of features, together with
recording whatever is recordable, should be used in learning
analytics in general.

One important conclusion for the field of multimodal
learning analytics is that good predictors were found in each
one of the media analyzed. Video contributed the use of the
calculator, audio contributed the number of times the stu-
dent talk about numbers and the pen-recording provided in-
formation about the speed of writing. Each feature seems to
be measuring an independent factor in the process of math-
ematical problem solving. While the analysis made in this
work were just to determine statistical significance, a larger
effort, paired with a larger dataset with more media, for ex-
ample biometrics, could uncover a more general model of
how to determine expertise in problem-solving.

Finally, the authors want to stress the importance of
openly available datasets in the progress of the learning an-
alytics field. The ability of objectively compare different
algorithms and models between researchers is what could
lead Learning Analytics to not only propose good ideas, but
to test them and standardize them for their easy transfer to
practitioners. Without a common testing ground, Learning
Analytics risks becoming an art and not a science.
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